Campus Network Best Practices: Structured Cabling

Dale Smith Network Startup Resource Center dsmith@nsrc.org

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

UNIVERSITY OF OREGON

We all have some ugly wiring

Structured Cabling Systems

- Only two types of cabling:
 - Unshielded twisted pair copper provides service to individual computers and between network closets
 - Fiber optic cabling provides service to buildings and between network closets
- Everything is run in a star configuration

Unshielded Twisted Pair Cable

- Run in star configuration from network rack location to individual outlets in offices or labs.
- Run at least 2 cables to every outlet I recommend 4 if you can afford it.
- Run 4 to 6 cables between network racks if the distance is less than 90 meters
- Question: what type of cable to run? Cat5, cat5e, Cat6, ???

What type of UTP

• What speed does each type support?

Cable Type	Max Speed	Max Distance	Cost Factor
Category 5	100Mbs	100m	1x
Category 5e	1000Mbs	100m	1x
Category 6	1000Mbs	100m	1.5x
Category 6	10,000Mbs	57m	1.5x
Category 6a	10,000Mbs	100m	3x

• Strongly recommend category 5e cabling.

UNIVERSITY OF OREGON

Unshielded Twisted Pair Cable

- Always terminate in Jack Panel
- Labeling is a key to reduce work later
- Pull more than one cable

Fiber Optic Cabling

- Two basic types of fiber
 - Multi Mode

– Single Mode

Multi Mode Fiber

- Two basic types:
 - 62.5 micron core. Legacy, older style
 - 50 micron core. Newer
- A number of standards to be aware
 - G.651 50 micron
 - OSI/IEC 11801 OM1 62.5
 - OSI/IEC 11801 OM2 50 micron
 - OSI/IEC 11801 OM3 50 micron laser optimized
 - OSI/IEC 11801 OM4 50 micron higher bw

UNIVERSITY OF OREGO

Single Mode Fiber

- All have core between 8 and 10 micron
- Standard types:

UNIVERSITY OF OREGON

- OS1 and OS2 (OSI/IEC 11801 types)
- ITU G.652 (A, B, C, D)
- ITU G.653 1310/1550 with EDFA amps
- ITU G.654 1550 only
- ITU G.655 1550/1625 for long haul DWDM
- ITU G.656 1460/1625 for long haul DWDM
- You want G.652.D or OS2 single mode

Types of Optical Interfaces

Standard	Speed	Fiber Type
100baseFX	100Mbs	MM
1000baseSX	1Gbs	MM
1000baseLX/LH	1Gbs	MM or SM
10GbaseSR	10Gbs	MM
10GbaseLRM	10Gbs	MM
10GbaseLR	10Gbs	SM
10GbaseER	10Gbs	SM

Optical Interfaces: Cost & Distance

Standard	Cost	OM1	OM2	OM3	OM4	G.652.D
100baseFX	\$250	2km	2km	2km	2km	No
1000baseSX	\$500	275m	550m	1km	1.1km	No
1000baseLX/LH	\$1000	500m	500m	?	?	10km
10GbaseSR	\$1500	33m	82m	300m	550m	No
10GbaseLRM	\$1300	220m	220m	220m	?	No
10GbaseLR	\$4000	No	No	No	No	10km
10GbaseER	\$10000	No	No	No	No	40km

Unfortunately, Not Simple

- Various types of fiber make this confusing
- Different equipment vendors claim different numbers
- From Cisco web site:

"On average, customers will experience much longer transmission reaches than reported in the IEEE specifications, given better than worst-case optics and better than worst-case multimode fiber characteristics. "

Fiber Price Comparison

- Single mode fiber cabling is cheaper
- Multi mode optical interfaces are cheaper
- What makes sense for your campus?

Fiber Type	Cost per km	Cost 1Gbs	Cost 10Gbs
OM1 (62.5 legacy)	\$4,884	\$500/1000	\$1300/\$1500
OM2 (50 legacy)	\$4,054	\$500/1000	\$1300/\$1500
OM3 (50 laser optimized)	\$10,151	\$500/1000	\$1300/\$1500
OM4 (new std)	\$19,959	\$500/1000	\$1300/\$1500
G.652.D (single mode)	\$1,185	\$1000	\$4000

Pricing based on 12-fiber outdoor cable, Corning 012TU4-T41xxD20

Simple Fiber Pricing Example

- Consider the simple network below
 - Total fiber length 1400m
 - 8 optical interfaces

Pricing Example – 1Gig Links

 Use cheapest optical interface possible, but note that cheap interface is distance limited based on fiber type

Fiber Type	Fiber Cost	Optics	Optics Cost	Total Cost
OM1	\$6,837	2x1000baseSX 6x1000baseLX	\$7,000	\$13,837
OM2	\$5,675	8x1000baseSX	\$4,000	\$9,675
OM3	\$14,211	8x1000baseSX	\$4,000	\$18,211
OM4	\$27,942	8x1000baseSX	\$4,000	\$31,942
G.652.D	\$1,659	8x1000baseLX	\$8,000	\$9,659

Pricing Example – 10Gig Links

 Note that some fiber types won't support 10Gig over the required distances

Fiber Type	Fiber Cost	Optics	Optics Cost	Total Cost
OM1	\$6,837	Not supported		No
OM2	\$5,675	Not supported		No
OM3	\$14,211	Not supported		No
OM4	\$27,942	8x10GbaseSR	\$10,400	\$38,342
G.652.D	\$1,659	8x10GbaseLR	\$32,000	\$33,659

Fiber Optic Recommendations

- Only install Multi Mode OM2 if distances are short
- Don't do OM1, OM3 or OM4 anywhere
- Install Single mode everywhere
- Run in star configuration from core network location to individual buildings
- Run in star configuration inside of buildings from main network closet to other closets
- To reduce costs, can run large fiber cable from core to some remote location, then smaller cables from there to surrounding buildings

Star Configuration

- Plan for future -- Install enough fiber
 - Between Buildings: 6 single mode from core to each building (multi mode OK if distances are short)
 - Inside of buildings: 6 single mode and 6 multi mode between network racks
 - Can build incrementally

Star Configuration

- Plan for future -- Install enough fiber
 - Between Buildings: 6 single mode from core to each building (multi mode OK if distances are short)
 - Inside of buildings: 6 single mode and 6 multi mode between network racks
 - Can build incrementally

Fiber Optic Topology

Building 1

Putting it all Together

Building 1

Questions?

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

