Campus Networking Workshop

IP Addressing and Routing

IPv4 addresses

- 32-bit binary number
- How many unique addresses in total?
- Conventionally represented as four dotted decimal octets

10000000110111111001110100010011

Can you explain why $00010011=19$ in decimal?

Prefixes

- A range of IP addresses is given as a prefix, e.g. 192.0.2.128/27
- In this example:
- How many addresses are available?
- What are the lowest and highest addresses?

Prefix calculation

$$
192 \text {. } 0 \text {. } 2 \text {. } 128
$$

Prefix length / 27 è \square First 27 bits are fixed
Lowest address:
11000000000000000000001010000000

$$
192 \text {. } 0 \quad . \quad 2 \quad .128
$$

Highest address:
11000000000000000000001010011111

IPv4 "Golden Rules"

1. All hosts on the same L2 network must share the same prefix
2. All hosts with the same prefix have different host part
3. Host part of all-zeros and all-ones are reserved

Golden Rules for 192.0.2.128/27

- Lowest 192.0.2.128 = network address
- Highest 192.0.2.159 = broadcast address
- Usable: 192.0.2.129 to 192.0.2.158
- Number of usable addresses: 32-2 = 30

Exercises

Network 10.10.10.0/25

- How many addresses in total?
- How many usable addresses?
- What are the lowest and highest usable addresses?
- Network 10.10.20.0/22
- How many addresses in total?
- How many usable addresses?
- What the the lowest and highest usable addresses?

An edge case

- How many usable addresses in a $/ 30$ prefix?
- What is this used for?
- (Note: modern routers support /31 for this purpose to reduce IP address wastage)

Netmask

- Netmask is just an alternative (old) way of writing the prefix length
- A '1' for a prefix bit and '0' for a host bit
- Hence N x 1 's followed by ($32-\mathrm{N}$) x 0 's

$$
/ 27=
$$

Subnetting

- Since each L2 network needs its own prefix, then if you route more than one network you need to divide your allocation
- Ensure each prefix has enough IPs for the number of hosts on that network

End User

Allocation

Subnets

Subnetting Example

- You have been given 192.0.2.128/27
- However you want to build two Layer 2 networks and route between them
- The Golden Rules demand a different prefix for each network
- Let's split this address space into two equal-sized pieces

Subnetting /27

192 . 0 . 2 . 128
11000000000000000000001010000000

Move one bit from host part to prefix We now have two /28 prefixes

11000000000000000000001010000000

192 . 0 . 2 . 128
Second prefix:

1100000000000000000000101001
 0000

Check correctness

- Expand each new prefix into lowest and highest
- Ranges should not overlap
- 192.0.2.128/28
- Lowest $($ network $)=192.0 .2 .128$
- Highest $($ broadcast $)=192.0 .2 .143$
- 192.0.2.144/28
- Lowest $($ network $)=192.0 .2 .144$
- \quad Highest $($ broadcast $)=192.0 .2 .159$
- How many usable addresses now?

Aggregation tree

- Continue to divide prefixes as required
- Can visualize this as a tree

How Much Space for a REN

- Every member connected with a point to point link
- Every point to point link requires at least a /30 (4 addresses)
- REN will address space for;Network management equipment and Services such as web, video conferencing
- Build a spreadsheet that details all the above

A Simple (Small) REN Example

Simple (Small) REN Example

Network	Hosts	CIDR block Size Qty Total			
Point to point links	2	/30	4	7	28
Server network for network Mgmt	40	/26	64	1	64
Server network for Services	40	/26	64	1	64
Future network for services	40	/26	64	1	64
Future customer links	2	/30	4	4	16
Total					236

Questions on IPv4?

IPv6 addresses

- IPV6 provides a platform on new internet functionality that will be needed in the immediate future and provide flexibility for future growth and expansion.
- 128-bit binary number
- Conventionally represented in hexadecimal
- 8 words of 16 bits, separated by colons

2607:8400:2880:0004:0000:0000:80df:9d13

- Leading zeros can be dropped
- One contiguous run of all-zero words can be replaced by "::"

2607:8400:2880:4::80df:9d13

Benefits of IPV6.....

New header format

Large address space

\longrightarrow Extensibility

Built in Security

Efficient \& hierarchical addressing and routing infrastructure

IPv6 rules

With IPv6, every network prefix is /64
(OK, some people use /127 for P2P links)

- The remaining 64 bits can be assigned by hand, or picked automatically
- e.g. derived from NIC MAC address
- There are special prefixes e.g. link-local addresses start fe80::
- Total available IPv6 space is $\approx 2^{61}$ subnets
- Typical end-user allocation is /48

IPv6 addressing

- How many /64 networks can you build given a /48 allocation?

IPv6 addressing

- You are assigned 2001:db8:123::/48
- 2001:0db8:0123:0000:0000:0000:0000:0000
- Lowest /64 network?
- 2001:db8:123:0000::/64 • written simply

2001:db8:123::/64 • Highest /64 network?

- 2001:db8:123:ffff::/64

Ways to allocate the host part

- Do it automatically from MAC address - "stateless auto configuration"
- Not recommended for servers: if you change the NIC then the IPv6 address changes!
- Can number sequentially from 1 , or use the last octet of the IPv 4 address
- Or embed the whole IPv4 address
- e.g. 2607:8400:2880:4::80df:9d13
- 80 df 9 d 13 hex $=128.223 .157 .19$ in decimal
- Can write 2607:8400:2880:4::128.223.157.19

