Integrating Wireless into Campus Networks

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

Terminology issues

- The networking and wireless worlds sometime use identical words or expressions that have a different meaning in their respective environments
- Since we are approaching wireless in the context of networking (or vice versa ? :), we need to agree on definitions, and thus avoid misunderstandings.

Confusion

Some of the terms that need clarifying:

- PoE (Power over Ethernet)
- Access point
 - Router
 - Roaming
 - Bridge
- Broadcast domain

PoE (Power over Ethernet)

- In the wireless world, PoE is referred to any time a category 5/5e/6 cable is used to carry both the Ethernet signal and the power. The power can be 12, 24, or 48 volts DC (or any voltage in between).
- In the Networking world, PoE refers to the IEEE 802.3af standard that provides 48 volts DC over the same cable that carriers the Ethernet signal.
- The conflict is in the DC voltage. Beware!

Access point

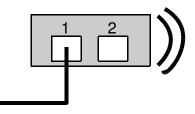
Reminder: in wireless, all equipment that can connect to a wireless network categoriezed into one of three categories:

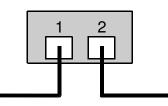
- Access Point, master, sometimes referred to as infrastructure. These are typically boxes that we've been configuring and have a combination of radios and wired Ethernet ports.
- Client. This is typically your laptop.
- Ad-hoc. A special mode where two devices act as peers and talk to each other

Access Point continued

- When connected to wired networks, an access point can function as a bridge (L2), a router (L3), or even both.
- In the networking world, the term access point is almost always used to designate a device used to bridge traffic between a wireless network and a wired network, at Layer 2.

Bridge


A bridge is used to connect 2 or more Layer 2 segments together


- A **segment** in this case may be:
 - a wired network
 - a wireless network
- A bridge is essentially a 2 port switch

An access point which connects 2 interfaces: ...

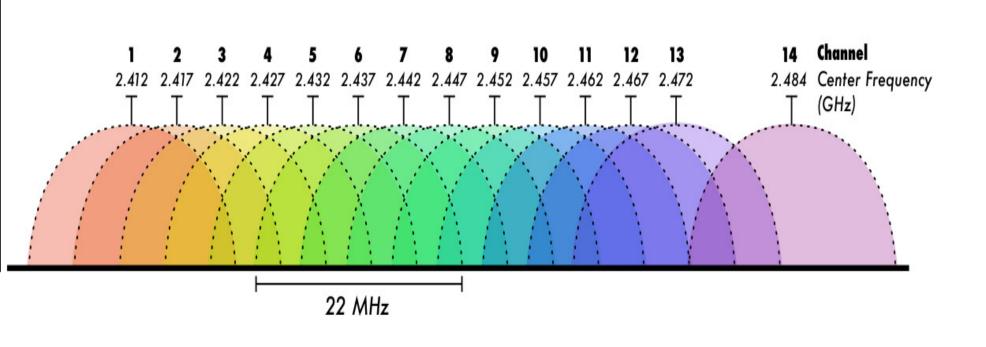
- a wired interface (e.g.: 100/1000baseT)
- a wireless interface (e.g.: 802.1g)

... at Layer 2 is a **bridge**

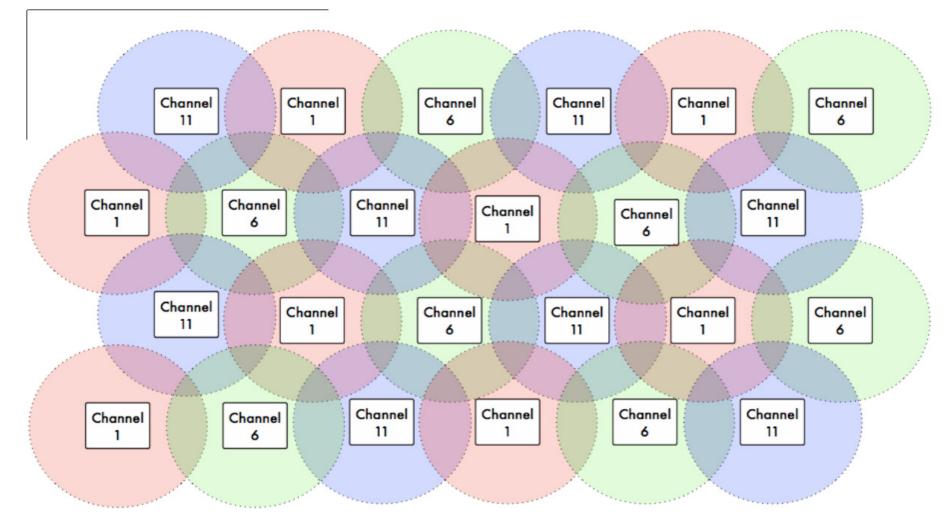
Router

- Good to point out that NAT is not an essential function of an IP router
- Small devices usually implement it, including most access points, which frequently can be configured to function in router mode
- Can't roam between routers and keep sessions. Hence not desirable in larger environments

Broadcast domain

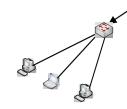

- In computer networking, a division of the network where all nodes (or hosts) within can reach each other by broadcast at L2
- **Broadcast** is, on ethernet, performed by sending traffic to MAC address ff:ff:ff:ff:ff:ff
- In the context of wireless, the equivalent of a broadcast domain from the networking world is implemented as SSIDs, so a single broadcast domain will be a single SSID

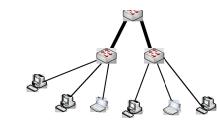
Frequency planning

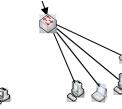


Frequency planning

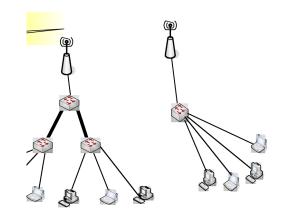
Integrating Wireless into the Network


- Wireless links (PtP) may replace fiber/wired links in the core network where distance or budget or security aspects suggest this
- Wireless "hotspot" access on the edges: offices, cafés, libraries, workspaces, ...
- Wireless mesh clouds on the edges, e.g. for compounds, housing, villages

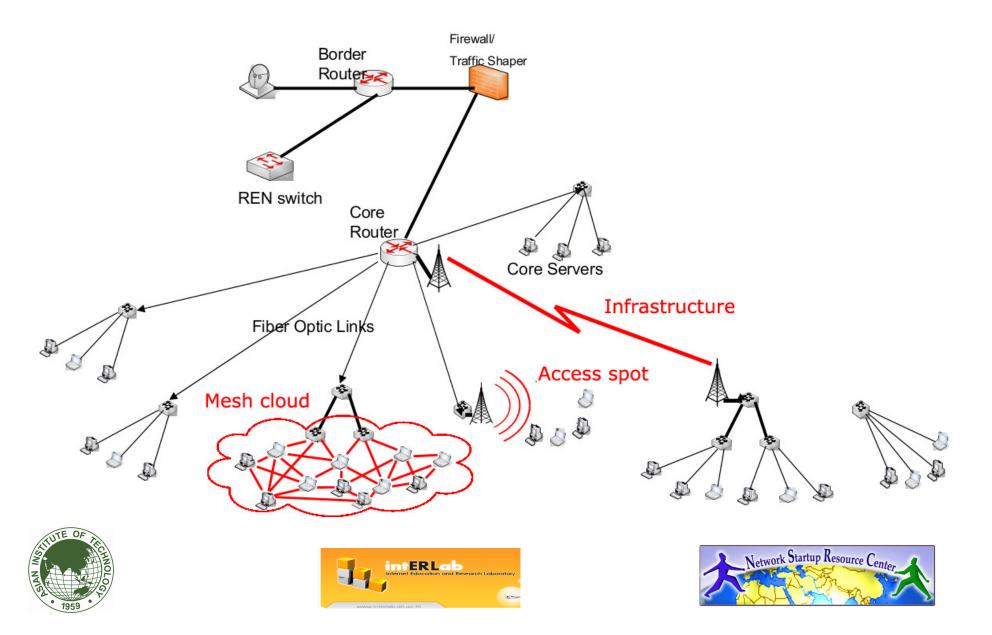




Point to Point



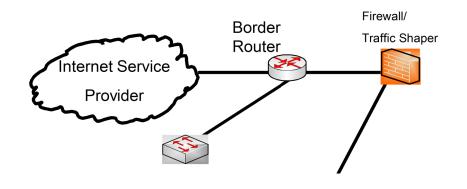
Point to Point


- Can replace fiber links
- Slower
- Less reliable
- Less costly
- Quicker to deploy
- Always put on a separate subnet connect to a routed port in the core

Wireless LAN – Use Campus Net

Wireless LAN (Hotspot)

- Scope and Scale
 - Single Access points in Library, Coffee Shop, Classroom, workplace
 - Or more seamless coverage throughout public spaces (outdoor) – anywhere someone might study or work
 - Large scale deployment will be complex



Wireless LAN – Use Campus Net

Ś

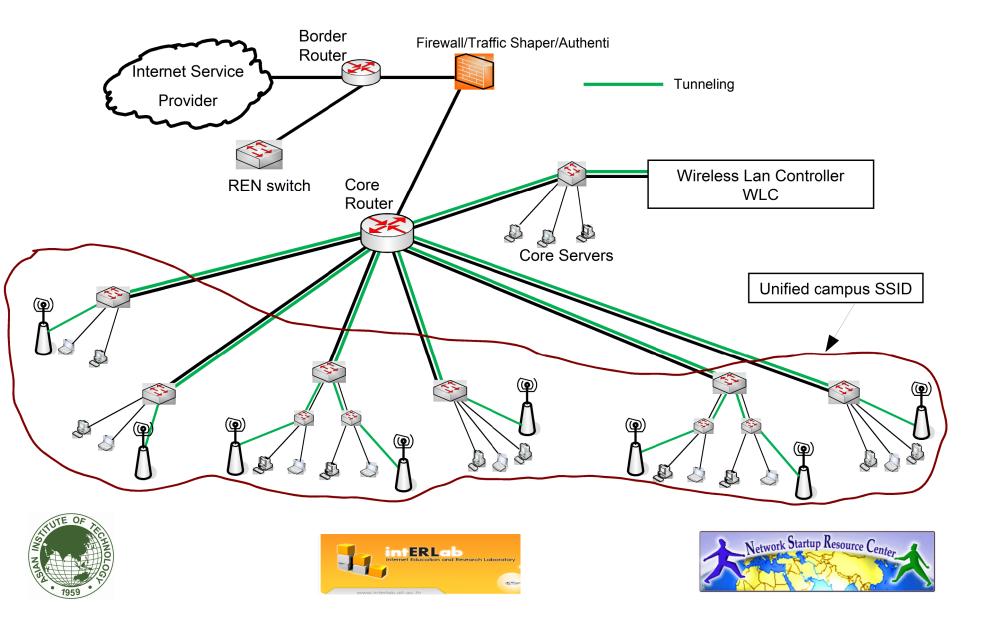
Problem to face

- Authentication
 - It depend on your campus AUP and/or your country laws.
- IP Address/subnet/VLAN
 - Use same data subnet/VLAN or separate.
 - Unifi subnet/VLAN
- Roaming
 - Your wireless smart phone/tablet mobility.
- APs administration
 - Install/upgrade/config APs firmware.

2 Solution

- Enterprise solution
 - Cisco
 - Aruba
- Low end solution (aka DIY)
 - Linksys, Mikrotik, ubiquit.
 - Need to prepare your campus network to support:
 - Campus-wide authentication (for wireless).
 - Roaming.
 - Administration (centralize tftp server to store firmware/config files/Log)

Enterprise Solution


- Cisco / Aruba
 - AP and controller
 - Can operate in L3 mode
 - APs can be installed anywhere in campus
 - APs automatically search and register itself to controller
 - APs establish tunnel to controller
 - All client traffics managed by controller
 - Roaming, Authentication, VLAN manage and APs configuration can be managed from centralize location

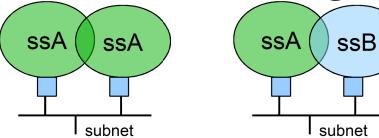
Enterprise Campus wireless solution

Low end solution

- Linksys (WRT54G[L])
 - A favorite platform for open source community
 - Numerous firmware available to flash with (DD-WRT, Tomato and OpenWrt.)
 - Feature rich
 - Can be integrated with campus net with some effort
- Mikrotik
 - Sell cheep hardware and software solution
 - Hude third party companies who make accessories specifically for MikroTik products

Core Router																	\checkmark	\checkmark
Wireless Backbone									\checkmark							\checkmark	~	
3G Device			V		V			\checkmark	\checkmark		\checkmark	\checkmark				\checkmark		
Gigabit Eth									~				V			\checkmark	V	V
Heavy Load Multi AP							V	V	V							V	\checkmark	
Heavy Load AP				V	V		V	~	\checkmark							V		
Average Load AP				V	V	\checkmark	V	V	V			V		V		V		
Easy Load AP		V	~			\checkmark						V		V				
Heavy Load Ethernet Router							\checkmark	V	V			2	V			V	~	\checkmark
Average Load Ethernet Router						V	V	V	\checkmark	V	V	V	V	V	V	\checkmark		
Easy Load Ethernet Router						V				V	V	V		V				
Low Cost CPE, Point-to-Point	V																	
	411/711/SXT/Groove	411AR/711A/Groove A	411U	411AH	411UAHR	433	433 AH	433 UAH	435G	450/750	750UP	751U	450G/750GL	493	493AH	493G	800	1100/1200

Low end solution

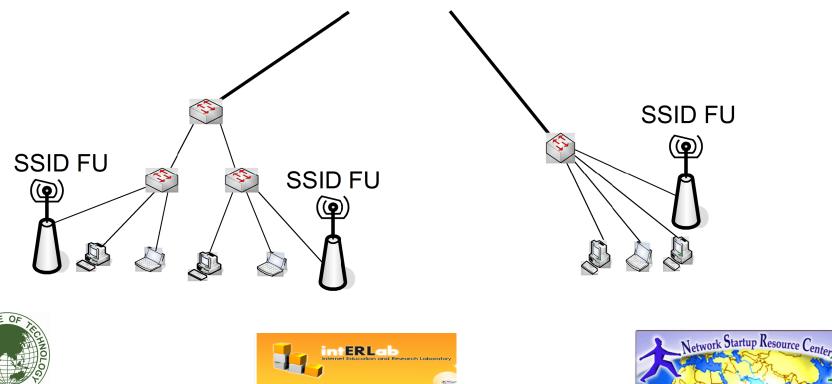

- Ubiquiti Unifi Wifi system
 - Free downloadable controller software
 - All APs can be managed centrally by controller.
 - Support CP on the controller
 - Cheep hardware.

Roaming matrix

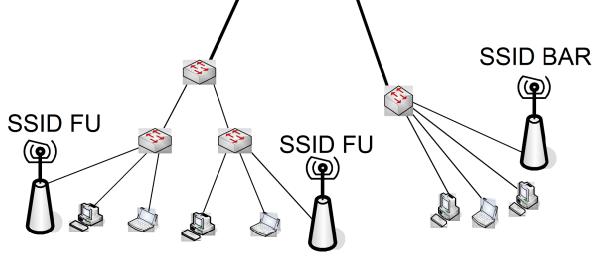
same SSID	different SSID	
OK (1)	OK (2)	same IP subnet
NO (3)	OK (4)	different IP subnet
ssA ssA	SSA SSB	

Roaming and Client Behavior

- Wireless LANs use SSID for identification of network
- If a client moves from one access point/router to another that has the same SSID, it will not use DHCP to request a new IP address
 - This is why you can't roam with routers
 - And why you can with access points if you design your network appropriately



Roaming with same SSID


- Same SSID on access points
- Client will not request new IP address when moving between access points

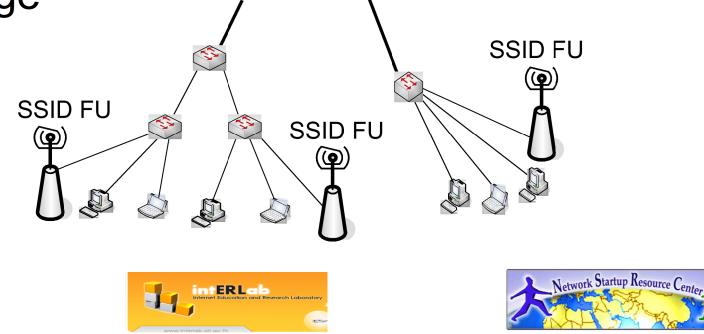
Roaming with Different SSID

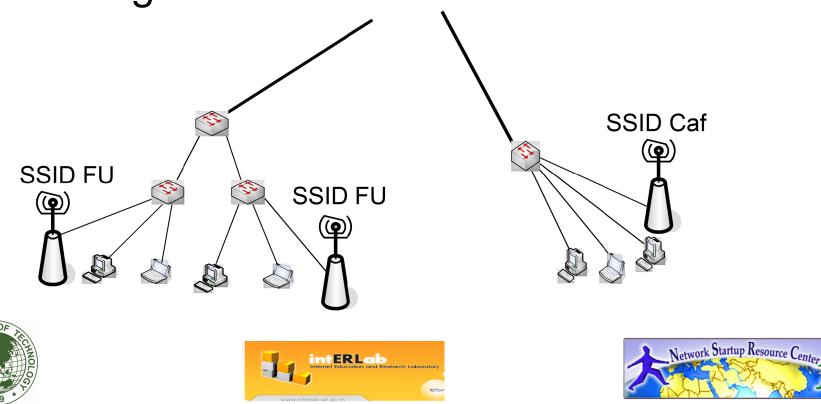
- Different SSID on some access points
- Client will request new IP address when moving between access points with different SSID

Internet Education and Res

What happens when Roaming?

- Access points learn Ethernet (MAC) addresses
- Switches learn Ethernet (MAC) addresses
- Everything works fine from an Ethernet perspective because of dynamic learning of MAC addresses
- How about the IP layer?
 - If IP address changes with no change in SSID, it won't work




Roaming and IP – same SSID

- Unless we do something, this doesn't actually work
- Remember different buildings are on different subnets, so IP address needs to change

IP and Roaming - Different SSID

- This actually works
- Client will request new IP address when moving between IP subnets

Roaming

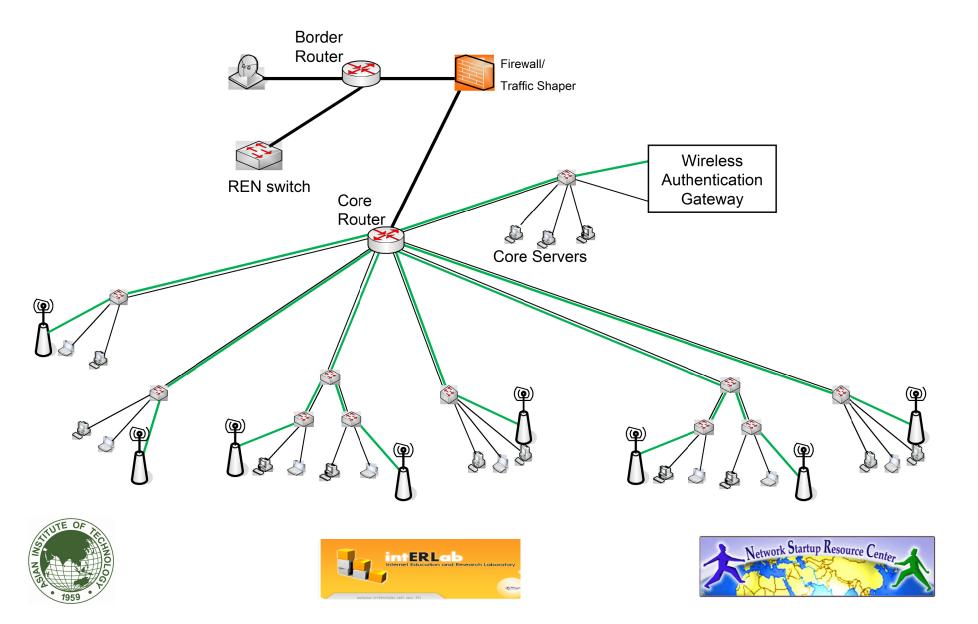
- On smaller networks, it's easy to do L2 roaming
- As networks get bigger, best to avoid large L2
- (broadcast) domains
- IP segmentation/subnetting
 - Why sacrifice this architectural principle when implementing wireless ?

Roaming cont.

Necessary to find the right balance

- Groups of access points in same L2, same SSID, when closely located (same building, room, ...)
- Different locations, different L3 (IP) networks, different SSIDs

Authentication?


- Would like to protect your network from outside folks
- Would like to know who is using your network
- Would like to be able to deny admission to even known folks
- How might we do this?

Simple Campus wide wireless solution

Wireless Access Controls

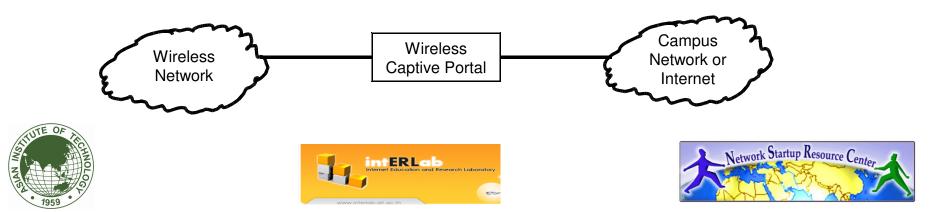
- Can use WPA with a pre-shared key
 - Common for hotels and home/office use
 - Hard to keep folks from sharing what the key is, so soon everyone has access
 - Doesn't provide you with identity of user
- Better to do something that requires authentication
 - Provides identity of user

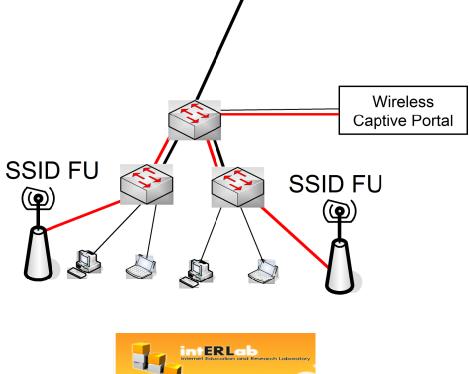
Wireless Authentication

- Many techniques available:
 - Captive Portal
 - Intercepts web traffic and redirects to a "login" page
 - Typically an "in-line" device
 - Limitations on performance
 - Client only needs a web browser (that supports ssl)
 - 802.1X
 - IEEE standard for port-based access control
 - Enforced by access point (not in-line device)
 - Client must support 802.1X

Wireless Authentication (cont.)

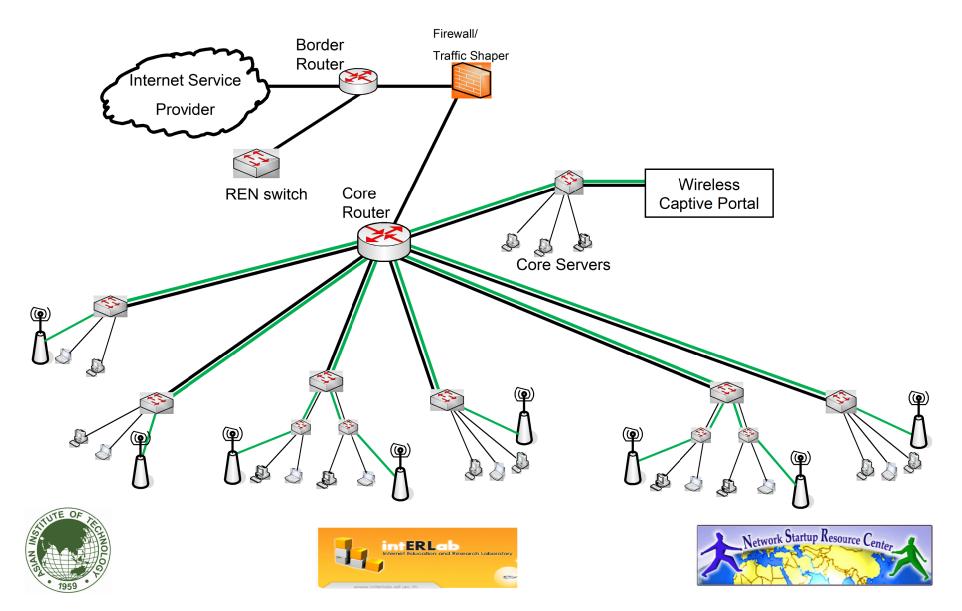
- Network Access Control (NAC)
 - Depend largely on your network equipments (switches)
 - Managed switch must be used across the campus
 - Provide authentication for both wired and wireless
 - Client needs a web browser (that supports SSL)
 - Netreg, Packetfence, bradford http://netreg.sourceforge.net/ http://www.packetfence.org http://www.bradfordnetworks.com/network_access_control




Captive Portal Network

- Portal is "in-line"
- Only allows traffic through after Authentication
- Becomes a performance bottleneck
- How do you do this on your campus network?

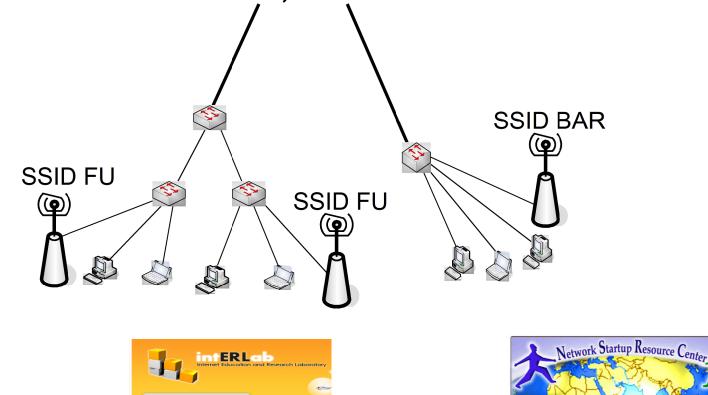
Captive Portal Network

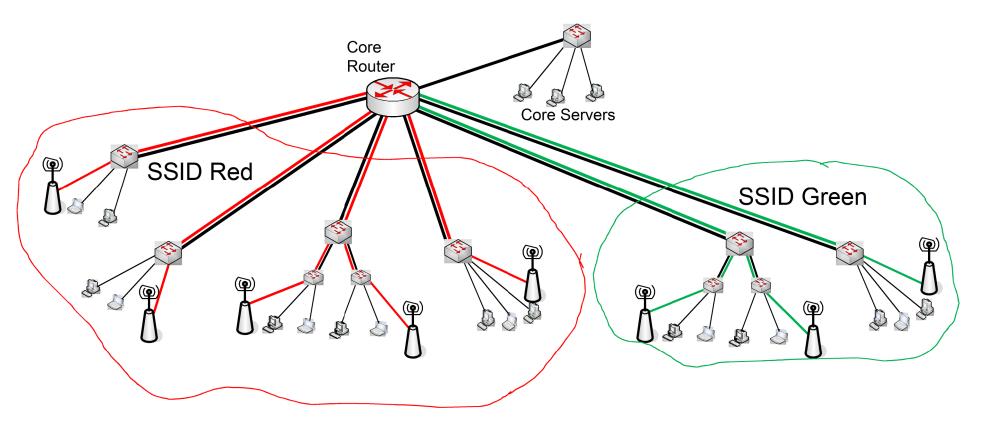

- Trick is to deliver traffic from access point to portal
- Simplest way is to use VLANs

Single Campus VLAN for Portal

802.1X Authentication

- Access control technique
- Requires 802.1X support in client
 - Windows XP, Vista, 7
 - MacOS and iOS
 - Android
 - Linux requires installation of drivers
- Networking for this is easier, but must worry about roaming across separate layer 3 networks (subnets)




802.1X and Roaming

- If you change subnets, you must use different SSID
- This is inconvenient, but works:

Can use VLANs for 802.1X

Key Issues

- Point to Point Links
 - Keep on separate subnet broadcasts use bandwidth, so minimize them
- Wireless LAN
 - A single SSID means a single layer 2 network (broadcast domain)
 - Need to scope SSIDs to prevent problems

Thanks

Questions?

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

Symbols to use for diagrams

